Young Stroke Survivors

A Tale of Two Carotid Artery Dissections, and the Miracle of the Circle of Willis

Nature is kind to some, and not so merciful to others. Much of what happens to us on a daily basis stems from chance, and almost every evening I try to reflect at least briefly on my good fortune to have experienced another day with my family, friends, and patients, knowing that it can all change so abruptly.

In order to understand the wonder and tragedy that lies within the following anecdote, it is necessary to understand some of the basic vascular anatomy of the brain – the plumbing that enables blood to circulate, that sustains the function and viability of the organ that makes us who we are.

circle of willis image

Image credit: http://www.deviantart.net

There are typically four arteries that bring blood to the brain – an internal carotid artery on each side (A) and a vertebral artery on each side (B); the vertebral arteries join together to form the basilar artery (C), which supplies blood to the brainstem and the back of the brain. The major arteries that extend from the internal carotid arteries in the brain are the middle cerebral arteries (D), and again, there is one on each side. The middle cerebral arteries supply blood to approximately 2/3 of the cerebral hemispheres. Smaller arteries supplying the inner midline surfaces of the brain also arise from the internal carotid arteries, called the anterior cerebral arteries (E). In the majority of people, there is a bridge connecting the right and left anterior cerebral arteries, called the anterior communicating artery (commonly called the AComm, F). With the AComm comes a connection between blood flow going to the right and left sides of the brain. I have seen patients arrive with completely blocked carotid arteries and absolutely no symptoms, and when evaluating cerebral blood flow with ultrasound or with angiographic imaging, it is clear that the side of the brain with the carotid artery occlusion is borrowing blood from the other side, using what is called collateral flow.  There is also the potential for sharing blood between the front of the brain and the back, via posterior communicating arteries (PComms, G, potentially one on each side). A complete circle in patients with both an AComm and PComms in addition to the other normal arteries in the brain is known as the Circle of Willis. About 30% of people possess a complete Circle of Willis.

During a weekend when I was on call, a previously healthy man in his 40s transferred from an outside hospital for management of an extensive right hemispheric ischemic stroke. He was critically ill upon arrival with an extremely concerning neurological exam. His angiographic imaging (imaging of his arteries) revealed that he had a right internal carotid artery dissection (essentially, tearing of the inner lining of the artery) with thrombus (clot) obstructing flow. His right hemisphere was ischemic, and he was unable to generate alternative ways of obtaining blood flow to this region in his brain. He lacked a complete Circle of Willis – no AComm and no PComms.

I find that certain days exist in which neurological themes declare themselves. On some days, I will see four patients consecutively who all have atrial fibrillation, an irregular heart rhythm that can result in ischemic strokes. On other days, I may receive three referrals for stroke that occurred during pregnancy or in the postpartum period. On that particular weekend, though, the theme was clearly carotid artery dissections. As I was leaving this man’s room in the neurological intensive care unit, the ER paged me, requesting guidance on a woman who had arrived with drooping of an eyelid (ptosis), and her pupil on the same side was more constricted than in the eye on the other side. This sounded like a classic Horner syndrome. Horner syndrome can occur with an injury to the internal carotid artery, which can result in both of the findings mentioned as well as abnormal sweating on the affected side of the face. I recommended that the patient have a brain MRI along with an MR-angiogram of the head and neck to exclude the possibility of a carotid artery dissection, a potential cause of Horner syndrome. I received a page soon after this that her imaging was, indeed, consistent with a significant carotid artery dissection. Fortunately, there was no stroke present. Aside from the eyelid droop and abnormally sized pupil, she was completely neurologically normal. Her MR-angiogram of the brain revealed that she possessed something valuable that the first patient lacked – she had an AComm.

MRA right carotid dissection

The blue arrow delineates flow in this patient’s normal left internal carotid artery. The green arrow demonstrates the absence of blood flow in the right internal carotid artery. The red arrow identifies the AComm, connecting the left (normal) circulation in the brain to the right side, and enabling the patient to avoid a stroke.

When I evaluated the patient in the ER, she told me that she became concerned about the abnormal appearance of her pupil, and had decided to seek medical attention for this in the ER rather than waiting until Monday to talk to her primary care provider. She was started on antiplatelet therapy for stroke prevention, and did not sustain a stroke. Nearly one year later, her Horner syndrome has improved (although not completely resolved) and she is doing well.

I am convinced that carotid artery dissections are underdiagnosed. Frequently, these patients present to the ER or to their primary care providers with headaches that seem like migraines at first glance. Perhaps a head CT scan is performed, which is not an effective study for excluding ischemic stroke (especially very early stroke). A brain MRI is a more sensitive tool for identifying early ischemic stroke, but if a carotid artery dissection is present, this will only be seen on a brain MRI if the dissection is located close to the brain and is large. If the dissection is small, or located farther down in the neck, a brain MRI will miss it. If a patient seeks medical attention for a severe headache unlike any other previously experienced, a migraine that differs from the patient’s description of his/her typical migraines if the person is already a migraine sufferer, or if the patient has any associated neurological symptoms involving the face, eyes, speech, or extremities, a brain MRI along with some sort of imaging of the arteries in the head and neck should be performed.

I reflect back on the ironic juxtaposition of these two patients presenting on the same morning, and marvel at what a difference the presence of a tiny artery in the brain can make. In this case, it was the difference between returning to a good, normal life without stroke, and tragically in the first patient’s case, an untimely death. He passed away within the week, despite the intensive medical care that he received.

I have often wondered if I have a complete Circle of Willis. Do I have an AComm? I don’t know. I do not have an answer, and perhaps I will never seek one, because what is up there is working for now, and I cannot change what I have. Certain cards are dealt to us long before we ever take our first breaths in the world, and as much as we like to feel empowered to create our own destinies, we do not have a say in whether our Circles are complete or not. Stroke brings the realization of a loss of control, and with this comes fear and anxiety. Stroke is more than just a diagnosis with symptoms. But when I see a patient with a carotid artery dissection and an Acomm providing flow, I see perseverance, and it gives me pause.

Deconstructing the “Mini-Stroke”

On Sunday, November 3, 2013, the Houston Texans played an NFL home game against the Indianapolis Colts, which began relatively uneventfully. However, it became clear that the game would not proceed in a typical manner as millions of viewers observed live footage of Texans head coach Gary Kubiak, 52, collapse on the field while exiting to the locker room at halftime.

The following headlines filled the national media during the week after Kubiak’s event:

TIA “mini-stroke” may increase risk for serious stroke – CBS News, November 6, 2013

Texans’ Kubiak Had Mini-Stroke, out Indefinitely – Associated Press, November 5, 2013

 Kubiak Released From Hospital After Suffering Mini-Stroke – 740AM KTRH Houston, November 5, 2013

Gary Kubiak Had Mini-Stroke: Houston Texans Coach Released From Hospital, Out Indefinitely – The Huffington Post, November 5, 2013

I am a vascular neurologist, a neurologist who has completed additional fellowship training in order to specialize in the treatment and prevention of stroke. Since completing my stroke fellowship in 2010, I have had the great privilege of caring for many patients just like Gary Kubiak, adults on the relatively young side who never expect such an event to disrupt their lives. The unfortunate reality is that stroke can happen at any age and can affect anyone.

A concern I felt with the headlines above is the reference to Kubiak’s event as a mini-stroke. This is a term that has become very popular in our American culture, and I hear it all of the time from my patients and their family members. “It was just a slight mini-stroke.” “Aunt Mildred had a mini-stroke while eating dinner.” “He had a touch of the mini-stroke.”

A stroke is a stroke. Period. A stroke results in an injury to the brain. There are two basic types of strokes – ischemic and hemorrhagic. An ischemic stroke occurs when blood cannot reach part of the brain for a prolonged period of time and permanent damage to brain tissue takes place. A hemorrhagic stroke occurs when a blood vessel ruptures and bleeding occurs within the brain. Roughly 80% of strokes are of the ischemic type.

A transient ischemic attack, or TIA, occurs when blood flow is disrupted to the brain and symptoms concerning for stroke occur, but then blood flow is either restored or the brain compensates for the absence of blood flow by seeking and acquiring blood from other sources and no damage to the brain occurs.

During a stroke, brain damage occurs. During a TIA, damage does not occur.

What about a TIA during which damage does occur? What is that called? The answer is – a stroke.

To describe a TIA as a “mini-stroke” misses the difference between the two terms. A TIA is not a stroke because damage is avoided. A stroke is not a TIA because brain damage has occurred. I like to refer to a TIA as an almost-stroke as opposed to a mini-stroke. Throughout the lifetime of this blog, I will continuously refer to TIAs as almost-strokes.

Sometimes patients may refer to a stroke with relatively mild deficits as a “mini-stroke” to distinguish it from a stroke that leaves someone externally and obviously disabled. This is also inaccurate. I have seen patients without a single physical visible deficit from a stroke who are significantly disabled from the cognitive impairment that frequently occurs following a brain injury. I have cared for a patient for the past two years whose only symptom from her “mini-stroke” (the term she used at her first appointment with me) was a left-sided neglect syndrome. This occurs when the brain fails to recognize that the left side of the body exists, even though the left arm and leg may move appropriately and strength on the left side can be left fully intact. She was a successfully employed person prior to her stroke in her 50s, and she has not been able to work since her stroke. She does not factor in columns on the left half of the screen when working with spreadsheets because her brain fails to recognize the left half of her conceptual world. She neglects to brush the left side of her hair and has tooth decay in the left side of her mouth because she does not brush her teeth on that side. She cannot drive because she visually neglects cars that appear in the left half of her world, even though her vision on the left side is intact. Is this really a mini-stroke?

In the initial evaluation of a stroke patient, this graphic is presented in order to calculate a score known as the National Institutes of Health Stroke Scale Score (NIHSS Score). The examiner asks the patient to describe what is seen in the picture as a test of language fluency. However, patients with profound left visual neglect will describe the woman washing dishes at the sink, but will fail to recognize the children in the left half of the scene.

In the initial evaluation of a stroke patient, this graphic is presented in order to calculate a score known as the National Institutes of Health Stroke Scale Score (NIHSS Score). The examiner asks the patient to describe what is seen in the picture as a test of language fluency. However, patients with profound left visual neglect will describe the woman washing dishes at the sink, but will fail to recognize the children in the left half of the scene.

Perhaps the other reason why I prefer to avoid the modifier “mini” in front of a word as significant as “stroke” is because patients tend to downplay the importance of the event. I love caring for patients after TIAs, because the damage has not yet occurred, and we can intervene to prevent a stroke! If a patient has a TIA and refers to it as “mini,” then I find there is less motivation for the person to quit smoking, comply with therapy, eat healthily, or exercise regularly. After all, it was only a mini-stroke.

The other piece to these headlines is the relatively young age of the Texas coach. I definitely see patients at 52 with accelerated atherosclerosis (plaque buildup in the blood vessels, or “hardening of the arteries”), high blood pressure, diabetes, elevated cholesterol levels – some of the more typical stroke risk factors seen in older adults. However, it brings to light that a person is never too young to have a stroke, and more awareness hopefully will result in a call to 911 when stroke symptoms develop as opposed to taking a nap in an effort to sleep it off. Young people frequently do not believe their symptoms might represent a stroke, and choose to rest in hopes that the episode will resolve spontaneously. When they awaken, often there are no interventional options available, and therapy shifts from acute treatment of the current stroke to rehabilitating more long lasting deficits and focusing on how to prevent the next stroke.

During my stroke fellowship at the University of Washington/Harborview Medical Center in Seattle, I experienced my first encounter with stroke in the truly young patient. Samantha (not her actual name) was 16 years old when she developed weakness on the right side of her body and was diagnosed with an ischemic stroke based on her Magnetic Resonance Imaging (MRI) of her brain. Her physician recommended that she start taking aspirin daily, a medicine that assists in “preventing platelets from sticking to plaque in the blood vessel wall and from sticking to one another.” I put this phrase in quotes because I use it often when explaining why healthcare providers use aspirin for the prevention of strokes and heart attacks. While Samantha took her aspirin compliantly, she had a second stroke. Clopidogrel (trade name: Plavix) was added to her daily medication regimen. Take what I said aspirin does, and for most people, the effect is essentially more robust with clopidogrel.

Biological warfare had essentially been declared on Samantha’s platelets. She was also started on a statin, a class of medications to lower cholesterol and to protect blood vessels from accumulating plaque, or to protect against “hardening of the arteries.” Surely she was not going to have another stroke. But she did.

This is when I had the privilege of meeting Samantha. My stroke fellowship had just begun, and in my first weeks I encountered this young girl and her frightened mother. I did not know where to start, and I remembered words from mentors throughout medical school and my neurology residency training: Ninety percent of the relevant information for solving a medical mystery is in the history, or what the patient tells us. The rest of it – lab tests, radiology studies, you name it – confirms or denies a healthcare provider’s assessment of what the patient has described. Essentially, if the patient is describing symptoms of a stroke – weakness on one side of the body, drooping of the face, slurred speech – then my tests are to confirm or deny my suspicion. This is why taking the time to listen to patients is critical in providing care.

When Samantha recounted the stories of each stroke, there seemed to be a strong headache element. Headaches can occur with strokes, but many strokes are painless, and it seemed important that she would remember headaches while experiencing stroke symptoms. Not infrequently patients with strokes do not immediately recall a headache, because they are so alarmed by the weakness, numbness, or slurred speech that they forget to tell their physicians about the headache.

Samantha began her tale of her first stroke with details about a headache. My fellowship mentor and I decided that her strokes probably did not stem from platelets, blood clots, or plaque accumulation in her blood vessels. She was 16 years old, so how much plaque could she possibly have accumulated at that point in her young life? We determined that her strokes may have resulted from blood vessels constricting, or spasm/squeezing, as part of a newly described syndrome called Reversible Cerebrovascular Vasoconstriction Syndrome. In order to formally make the diagnosis a patient should undergo imaging of the blood vessels during an episode to demonstrate narrowing and constricting, and then repeat this imaging later to show that the constriction was reversible. We did not have this opportunity with Samantha as the episode was completed by the time we evaluated her, but we did decide to empirically start her on verapamil, a medication that can assist blood vessels with relaxation. The thought is that it can help to prevent constriction of the arteries.

Magnetic Resonance Imaging (MRI) of the brain of a young stroke patient with Reversible Cerebrovascular Vasoconstriction Syndrome. The bright areas are regions where blood flow has been recently disrupted as a result of arteries constricting.

Samantha did not have another stroke. We stopped her statin for cholesterol control, and we stopped her clopidogrel as antiplatelet therapy. Off of these two medications, she did not start having strokes again. I continued seeing her in the stroke clinic throughout my fellowship year, and she did very well in her recovery. I recently reconnected with her, and since that time she has had a healthy baby without stroke complicating her pregnancy.

The valuable lesson I learned from Samantha is that the young stroke patient is an entity of its own. Because many strokes in the general population stem from plaque accumulation and platelets adhering to it, stroke patients end up on medications that prevent platelets from functioning and on statins to prevent plaque buildup. In many cases, this is a correct, evidence-based course of action. But a 16 year old is not a typical stroke patient, and the origin of her stroke was not going to be typical either.

When a young celebrity has a stroke, it makes the national news, and there is dialogue for a few days about how surprising it is that someone so young could have a stroke: Bret Michaels, 47 at the time of his stroke; Frankie Muniz, 26 at the time of his “mini-stroke” (TIA). While gone from recent memory, Curly Howard of The Three Stooges fame died from complications of a stroke at the age of 48. Jean-Dominique Bauby, the editor of the French magazine Elle, sustained a severe stroke at the age of 43, resulting in locked-in syndrome, a phenomenon I will examine in a future blog post. Bauby “dictated” his memoir, The Diving Bell and the Butterfly, by blinking his left eye when his associate, Claude Mendibil, would speak the desired character after verbally scanning through the alphabet, starting with letters most frequently used in the French language for more optimal efficiency.

In my own practice, it seems like every week I evaluate someone who had sustained a stroke under the age of 50. The cumulative sum of patients in this population increases with each passing month, and in 2011, after practicing for one year following my stroke fellowship, I noticed that most of the young stroke patients seemed to experience similar issues that created significant stress in their lives. To start, young stroke patients spoke of feeling alone in their struggles because the people they knew with strokes were older, and thus they found it difficult to relate to the experiences of other stroke patients. These patients found their strokes to be financially stressful, as they typically were working full time prior to their events, and had not yet invested enough for retirement. One of the challenging questions frequently was whether to try to return to work for badly needed income despite deficits in functioning, or whether to apply for disability, knowing the amount would be substantially less than these patients were used to earning. Some of these patients had just become parents within the past several years, and others found that their relationships with their spouses had changed after stroke. One complaint I hear recurrently is the frustration young stroke patients feel when they are told: “You don’t look like you’ve had a stroke.” They feel an expectation to perform at their pre-stroke levels and to return to normalcy, but many feel forever changed in some way. It became clear that these patients needed a support group, and we launched the Young Stroke Survivor Support Group in May (Stroke Awareness Month) 2012 at our neurology clinic in Charlotte, North Carolina.

There is interest in stroke and how it can affect younger people, but there are few resources for this patient group. The Stroke Blog will tell the tales, with the blessings of the patients, of some of the young individuals affected by stroke who have entrusted me with their care. When a stroke appears in the mainstream media, I will attempt to break it down in an understandable way for readers here. While I probably will not be able to answer all of the questions that are sent my way, I will select questions that yield the opportunity for education and dialogue with the hope that greater understanding of stroke will come for my readers and will write about suggested topics. I will be unable to offer specific medical advice through the blog, though, and also kindly ask that if someone is experiencing concerning symptoms (weakness, numbness, visual loss, headaches, trouble speaking, etc.) that 911 be called as opposed to submitting a blog comment!

It is worth noting that approximately 25-30% of strokes, even after an extensive diagnostic workup, remain “cryptogenic” – that is, a flowery medical term for “we don’t know why this happened.” In these cases, I remain true to the principle that what the patient tells the physician is ninety percent of the answer. Then, I make the best decision I feel I can make, knowing that some things remain unknown, and regardless of what we may desire, tomorrow is not guaranteed to any of us. Young stroke patients have taught me more than I can possibly recount about humility, despair that transitions to optimism and hope, enduring love between partners, strength, determination, and how to keep going.

I sincerely hope that you will find The Stroke Blog useful, and I look forward to the journey.