Young Stroke Survivors

New book for patients with carotid and vertebral artery dissection is now available

One of the most meaningful parts of my neurology residency training was learning how to treat patients with carotid and vertebral artery dissections. Not only was I fascinated with the concept that a young person could sneeze or cough and severely injure an important artery as a result of such a benign action, but I was surprised by how frequently we identified dissections, yet they were referred to as “rare.” They did not seem rare to me, but I figured I was biased, given the specialty I had chosen to pursue.

Following my vascular neurology fellowship completion, I then moved to Charlotte, North Carolina, and continued to frequently make this diagnosis in young, healthy individuals. I found that many of them were presenting to the emergency departments in the area with headaches and/or neck pain, and were diagnosed as having migraines or muscular spasms until I would recommend imaging of the arteries in the neck before sending them home. When imaging studies would reveal dissection of a carotid or vertebral artery, there was usually relief from both patients and healthcare providers in identifying a treatable cause for symptoms, and in knowing that we could lower the risk of stroke from that point with the appropriate management. As I saw more dissection patients in the outpatient clinic setting, I learned that many of them continued to suffer with pain, anxiety, migraines, insomnia, fatigue, and difficulty concentrating, to name a few concerns. I heard these concerns voiced from dissection patients who had suffered strokes, and from those who had no evidence of stroke on MRI. I also observed that even patients whose follow up imaging indicated that their arteries were now “healed” they still had lingering symptoms.

Over time, I found that I was having the same conversations and answering the same questions repeatedly when talking to dissection patients and their loved ones. By 2013, I thought: “Someone should compile the questions these patients have in book form and attempt to answer them.” There was no such book available, and it seemed very much worth writing, if the right person would make the time for it.

On January 1, 2016, about six months after I had joined the faculty at Duke University, Amanda Anderson, a speech-language pathologist in Charlotte, a friend, and herself one of my former carotid artery dissection patients, contacted me, telling me she wanted to work on a “project” to distract her from the daily unrelenting pain that had come to define her dissection aftermath. She had already published a workbook series for patients with language impairment (aphasia), and I knew she would be a great collaborator. I decided that since the “right person” had not made time to write the book for patients that I thought needed to be written, then I would have to be that person.

We decided early into the planning process to write much of the book in a question-and-answer format, and that we would make it as comprehensive as possible, but provide explanations that were easy to understand. We also wanted the book to illustrate that carotid and vertebral artery dissection patients are real people with real lives, and found plenty of brave patients from around the country (and even one outside of the US) who were willing to share their stories. We wanted many of the personal stories to be written by the patients themselves in order to provide their perspectives in their own voices.

This morning, after a year and a half of writing and revising, Carotid and Vertebral Artery Dissection: A Guide for Patients and Their Loved Ones was published!

It has been such a moving, unforgettable journey, and a regular reminder of why I love this patient group so much. Amanda’s relentless enthusiasm and her compassion for her fellow dissection survivors has sustained me during busy times when it was challenging to find time to write.

When A Baby Has A Stroke: A Personal Story From the Executive Director of International Alliance for Pediatric Stroke

“Your baby has a brain abnormality.”

Those were the chilling words my husband and I heard when I was 29 weeks pregnant with our third child. We were told by the perinatologist that our unborn baby’s brain ventricles were enlarged and she would probably have hydrocephalus, a condition that results when spinal fluid cannot leave the brain and can lead to increased pressure within the skull. He couldn’t tell us much more than that. We prepared for the worst and hoped for the best over the rest of my pregnancy.

Our daughter, Michelle, was born just shy of 36 weeks, and the neurosurgeon was at the delivery to confirm that she did, indeed, have hydrocephalus. Three days later, when the neurosurgeon placed a shunt (a “pump”) in her brain to divert the flow of spinal fluid, he came to us with “good” news. Her hydrocephalus was a result of a brain hemorrhage that she had suffered sometime during my pregnancy. Apparently, a hemorrhagic stroke was a one-time “event,” which meant she didn’t have any other underlying major medical conditions.

Or so we thought.

At three months old, we and the team of doctors following Michelle noticed that she wasn’t using her right arm. The first red flag. Babies should not show a hand preference before one year of age. Michelle was diagnosed with right hemiplegia (weakness on one side), which we later learned was a type of cerebral palsy. Three months later she started weekly occupational and physical therapy, which we were able to continue for over ten years! Our lives consisted of juggling two older children with Michelle’s therapy appointments, a leg surgery, many doctor visits, MRIs, and multiple ankle-foot orthotics as she grew.

This graphic from the American Heart Association/American Stroke Association is part of a public awareness campaign to inform the public that a person is never too young to have a stroke.

We were fortunate that Michelle’s stroke was diagnosed early so she could start therapy at a young age. It was also a blessing that we lived in the Chicago area with an abundance of medical specialists to help Michelle reach her full potential. Through these specialists, I was able to meet other families who also had a child that had suffered a stroke and start a local support group. Knowing that we weren’t alone was a tremendous benefit for us as parents and it allowed the kids to meet others just like them. We were also able to have some of these medical specialists donate their time to come meet with our parents at our local meetings.

Unfortunately, sometimes good things come to an end. When Michelle was ten we moved to the Augusta, Georgia area. Even though I thought I had done my homework and assembled a team of medical specialists for Michelle, we discovered that medical philosophies vary from state to state. Access to specialists and hospitals is also limited in rural, less metropolitan areas. I wasn’t able to meet as many families as I had in Chicago, so support became an online endeavor. Two years later we moved to Charlotte, North Carolina, and again had to start fresh with new doctors and yet another philosophy about treating children experiencing the effects of a stroke. It was also quite a task to integrate Michelle’s educational needs in each of the new schools.

After moving twice in two years I gave up trying to create local support and decided it was time to create a global community with medically-vetted information and resources. That is how International Alliance for Pediatric Stroke was conceived. I have connected with so many families worldwide and have been able to work with pediatric neurologists and incredible advocacy leaders to improve awareness and education. What I have learned over the years is first, there are thousands of children impacted by stroke worldwide and families are eager to connect. Second, the resources and research for this population are lacking. Third, the diagnosis of stroke in babies and children tends to be delayed. Michelle’s “brain abnormality” being discovered before birth is not typical. Often, the diagnosis of stroke in babies is not diagnosed until months or even years after birth. That means these babies are missing rehabilitation opportunities during that valuable time early in life when their brains are rapidly developing.

Mary Kay and Michelle Ballasiotes promote advocacy and raise awareness of the challenges presented by stroke in early childhood.

The consequences for missing the signs of stroke in children can be even more devastating. Stroke is one of the top ten causes of death in children, and unfortunately, I have heard from parents who have shared their heart-wrenching stories of their children not surviving because the signs and symptoms were initially missed. One of my organization’s recent projects was partnering with the American Heart/American Stroke Association to create fact sheets for infant and childhood stroke. The more education and awareness we can provide on pediatric stroke, the better off these children will be.

Michelle is now 19 years old, and she just completed her first year of college. She drives, swims, was in the marching band, played soccer, took ballet, babysits, pet sits, has had multiple part-time jobs, and has been a public speaker for pediatric stroke since she was nine years old. We didn’t know what our baby’s outcome would be when we first heard those devastating words. We still don’t know what caused her stroke, which is the case with most perinatal strokes in children. It has been a learning process to navigate this unchartered path, but I have met incredible, strong families over the journey, and am hopeful for the future of all children impacted by stroke.

Allison Pataki shares young caregiver’s viewpoint after husband’s stroke at 30

Today, Allison Pataki published a moving New York Times blog post about her husband’s stroke at age 30. Pregnant with their first child at the time of the event, she describes continuing to work productively, preparing for a newborn, and instantaneously becoming her husband’s caregiver following this unexpected circumstance that life threw their way. Click here to read her tale.

#Redshoes4youngstroke: A Call to Action!

One of the central missions of The Stroke Blog since it went live in October 2014 has been to provide information to those who have survived a stroke or strokes that occurred at relatively young ages. The very first post, “Deconstructing the Mini-Stroke,” recognized that while there may be symptoms more-or-less universal to some stroke types regardless of a person’s age, that the young stroke population tends to struggle differently through what I call their stroke aftermath.

One problem in the young stroke population is that, while we have a drug (IV t-PA) that can help to minimize the long-term aftermath of ischemic stroke when administered within three to four-and-a-half hours of stroke onset, many young patients do not receive it. A number of my young patients have told me that when their symptoms began, they decided to take a nap or wait it out, either because stroke was not on their radar, or because even if it was, they believed stroke to be a disease of the elderly. Those who do take their symptoms seriously and seek emergent medical attention can be misdiagnosed, because healthcare providers may doubt that a stroke can occur at young ages. For hemorrhagic stroke, early medical attention can result in better outcomes for different reasons. Perhaps an aneurysm has ruptured requiring urgent surgical repair, or a hemorrhagic stroke patient requires emergent blood pressure control. When stroke symptoms develop, regardless of a person’s age, emergent medical attention should be sought. In the United States, this means calling 911 (not driving oneself to the hospital).

According to the Centers for Disease Control, in 2009, almost one-third of stroke hospital admissions in the U.S. were for patients under the age of 65. The Center for Health Statistics estimates that $15.5 billion was lost in productivity in the U.S. in 2008 as a result of stroke patients having to leave the workforce. When stroke strikes a young adult, it costs these individuals personally on many fronts, but it also takes its financial toll at a national level.

This is a public health problem. I want young people to know that when sudden paralysis develops in an arm or a leg, the right thing to do is to get to a hospital as quickly as possible in hopes that t-PA treatment may be a possibility. For severe strokes resulting in large artery occlusions, or “blockages,” we now have very compelling clinical trial data telling us that using a catheter to remove the blood clot is very beneficial in some patients, but only when the stroke is treated early. A delay of even a few hours may make the difference between being dependent on others for care, or returning to independence.

I challenge you to raise awareness about this problem. I challenge you to find a red pair of shoes in your closet, or purchase an inexpensive pair

Wearing my red shoes at the International Stroke Conference about 20 minutes before this blog post!

Wearing my red shoes at the International Stroke Conference about 20 minutes before this blog post! #redshoes4youngstroke

of red shoes, or if this is too much of a financial burden, to spray-paint an old pair of shoes red. Wear them proudly. The more they stand out, the better. If you are asked about them, use the opportunity to share with the questioner that a person is never too young to have a stroke. If you have a personal story to share, I challenge you to be bold enough to share it. If you are hesitant about sharing it, then communicate to others that stroke is not a disease only affecting the elderly.

Take a picture of your feet in these shoes, and post it to social media – to Facebook, Twitter, whatever. Include the hashtag #redshoes4youngstroke when you post it. Tag others in your posts whom you feel will care about this cause and participate. If you have the financial means to do so, consider making a donation to the American Stroke Association, National Stroke Association, Young Stroke, or another not-for-profit organization you feel has been supportive of the young stroke population. I will watch for interesting red shoe pictures with the #redshoes4youngstroke hashtag to come along, and will repost some of them with permission on The Stroke Blog.

Wearing my red shoes at the International Stroke Conference about 20 minutes before this blog post!

Moments before hitting “publish” for this post – hoping to bring more awareness around the plight of young stroke patients.

I’ll start. While purchasing a pair of boots for the winter online in January of this year, amazon.com recommended these shoes to me. I thought this was bizarre, as they looked nothing like the boots I had just purchased, but then it seemed almost fated. Somehow amazon.com knew me better than I knew myself, and realized that I would want these there’s-no-place-like-home shoes. Indeed I did, because I instantly decided to call them my “stroke awareness shoes.”

I wore them a few times earlier this month while caring for patients in the hospital to see how people would react, and I received multiple comments each day from patient family members, people in elevators, other parents when I picked my son up from basketball practice. I practiced giving my 20 second spiel about a person never being too young to have a stroke, and it resulted in a number of engaging conversations. Some people even said they would join me in wearing red shoes to raise stroke awareness!

I also want to thank the neurology residents at Duke University, who are not only fantastic physicians, but who have been my sounding board as I have contemplated this. They have been full of great ideas!

I am currently attending the American Heart Association/American Stroke Association’s International Stroke Conference, and am wearing my red shoes. I am encouraged at the response I have gotten over the course of the morning, and feel certain this can extend beyond those who care for stroke patients.

With greater awareness comes greater funding for research, greater compassion for the plight of a group of survivors, and greater understanding of an issue that exists in our society. Let’s wear our red shoes!

Clinical trial shows no difference in stroke prevention between antiplatelet agents and anticoagulation in carotid or vertebral artery dissection

Due to the number of readers of The Stroke Blog who have identified themselves as having experienced carotid or vertebral artery dissections with or without stroke, I believe a clinical trial from the United Kingdom is very much worth sharing here.

The Cervical Artery Dissection in Stroke Study (CADISS – Markus HS, et al) set out to answer a question that has existed for many decades in the world of stroke management. When a dissection (a tear in the innermost tissue layer of an artery) of a carotid artery or vertebral artery (arteries in the neck that bring blood to the brain), how is a stroke best prevented going forward? In patients who have already had a stroke at the time the dissection is diagnosed, the goal is certainly to prevent further strokes from occurring. If a patient has not already sustained a stroke, then sparing that person a permanent brain injury is the top priority. It has not been entirely clear how to achieve these goals though. Should a patient be treated with antiplatelet agents (medications impairing platelet function), such as aspirin, clopidogrel (Plavix), another antiplatelet agent, or some combination of these? Or should a patient be treated with anticoagulation, a drug that actively prevents clotting, such as warfarin (Coumadin) or heparin?

I have heard many arguments on all sides. Some neurologists say that antiplatelet therapy is just as effective as warfarin but carries a lower risk of hemorrhage. Others say that antiplatelet therapy is not aggressive enough and anticoagulation with warfarin or heparin (or both) should be used. Some say to start on antiplatelet therapy or anticoagulation and if symptoms get worse to switch to whatever therapy was not initially used. Others argue for placing a stent in the dissected artery. Until recently, there was no clinical trial actually comparing antiplatelet therapy to anticoagulation in patients with carotid artery or vertebral artery dissection, and the medicine selected for treatment was based entirely on anecdotes and the bias of the treating physician.

In the CADISS trial, patients presenting to one of the participating medical centers in the United Kingdom who were diagnosed with carotid or vertebral artery dissection (with or without stroke) believed to have occurred within the seven days prior to presentation were randomized. Half of the patients were started on antiplatelet therapy, and half were placed on anticoagulation. The duration of treatment was three months. The endpoint was to determine how many strokes or deaths occurred in each group. Whether or not the patient had already had a stroke before enrolling in the trial, the endpoint was to see, once antiplatelet therapy or anticoagulation was started, how many patients went on to have strokes despite that therapy.

The CADISS trial, published in Lancet Neurology in April 2015, did not find a statistically significant difference in stroke prevention in patients presenting with acute carotid or vertebral artery dissections when treated with either antiplatelet therapy or anticoagulation.

The CADISS trial, published in Lancet Neurology in April 2015, did not find a statistically significant difference in stroke prevention in patients presenting with acute carotid or vertebral artery dissections when treated with either antiplatelet therapy or anticoagulation.

Two hundred fifty patients were enrolled (118 carotid artery dissections and 132 vertebral artery dissections). Interestingly, 52 of these patients were not found to have carotid or vertebral artery dissections when their radiology studies were carefully reviewed as part of the study, despite initially receiving that diagnosis. Of the 198 patients remaining, there was no significant difference in strokes between the two groups. There was one episode of symptomatic bleeding in the anticoagulation group (subarachnoid hemorrhage, or bleeding in the brain that occurs when an artery in the brain ruptures). There were no deaths in either group. Of the 198 patients with radiological evidence of dissection confirmed, there were only four total strokes following initiation of the designated medical therapy in both groups combined.

The CADISS trial began as a feasibility study – a trial to see if it was even feasible to enroll enough patients with a condition not diagnosed with frequency in the emergency department. This phase of the study was statistically sound and convincing enough not to proceed with a larger trial.

A trial comparing stenting to medication alone has not been performed, and given the low number of strokes in patients on medical therapy in the CADISS trial, it is unlikely that a dissection stenting trial will be performed any time in the near future.

For more details about arteries bringing blood to the brain and about carotid and vertebral artery dissection, please refer to a prior post on The Stroke Blog by clicking here.

The take-away points from CADISS are as follows:

  1. The overwhelming majority of patients with carotid and vertebral artery dissection, if started on either antiplatelet therapy or anticoagulation soon after the dissection has occurred, will not go on to have a stroke while on therapy during the aftermath following the vascular injury.
  2. There is no significant difference in stroke prevention in patients with carotid and vertebral artery dissection between those using antiplatelet medications and those using anticoagulation.

The trial does not address the myriad symptoms many dissection patients notice lingering after the injury – migraines, neck pain, and anxiety, to name a few. One trial cannot address every possible issue associated with a medical condition. However, physicians who care for young stroke patients with this particular vascular injury should be celebrating the fact that we finally have evidence-based guidance for preventing stroke in these patients.

Cerebellar stroke – it’s about more than coordination and balance

The traditional teaching about the role of the cerebellum has typically been that it coordinates movements and “fine tunes” them. It provides balance when walking, and stability of a hand when reaching for a glass of water. When the cerebellum sustains an injury or is malfunctioning, then the result may be gait disturbance, falls, dizziness, or tremor.

The cerebellum is featured in red in this image. Image credit: www.brainhealthandgames.com

The cerebellum is featured in red in this image. Image credit: http://www.brainhealthandpuzzles.com

The ideas above are what I learned in high school biology, in anatomy, and in physiology. Even throughout my neurology residency training, I largely thought of the cerebellum as a structure that provided balance and fine tuned movement.

It has interested me during my time in clinical practice to witness the fallout from cerebellar stroke, particularly in the younger stroke population, because it is often far beyond balance and movement. Yes, the symptoms mentioned above are often present in some form when the cerebellar stroke occurs, perhaps along with a headache and/or nausea. However, the patients who struggle with recovery for months or years following a cerebellar stroke often complain of symptoms that do not fit with the traditional concepts of what the cerebellum is supposed to be doing.

Some of the complaints I have heard from numerous cerebellar stroke patients are as follows:

– Many struggle with the same cognitive symptoms that patients with strokes injuring the frontal or parietal lobes experience, such as difficulty with focus and multitasking, and because of this, they complain of difficulty with short term memory retention.

– Other cognitive symptoms may exist as well, such as feeling overstimulated, or having difficulty following a conversation in a group of people.

– Difficulty with language fluency (aphasia) has afflicted cerebellar stroke patients in my own experience, and their frustration after being denied disability benefits is palpable.

– Some cerebellar stroke patients express that they are unable to dream any longer, or that when they close their eyes to picture a scene – being at the beach on a breezy day, or running through a field of grass and flowers – they are unable to mentally visualize such a thing.

– Sometimes their significant others claim these patients have demonstrated changes in their moods or personalities, and that their relationships seem different since their strokes.

MR images of Jonathan Keleher's brain (A and B). The black diamond-shaped void in images A and B reveals Mr. Keleher's missing cerebellum. The images on the right demonstrate the presence of a cerebellum in the space in a normally developed brain. Photo credit: Massachusetts General Hospital, courtesy of Jeremy Schmahmann for use on NPR.org

MR images of Jonathan Keleher’s brain (A and B). The black diamond-shaped void in images A and B reveals Mr. Keleher’s missing cerebellum. The images on the right demonstrate the presence of a cerebellum in the space in a normally developed brain. Photo credit: Massachusetts General Hospital, courtesy of Jeremy Schmahmann for use on NPR.org

Last month, as I was driving home from work one evening, I heard this segment on National Public Radio’s All Things Considered, and I thought – yes! I have to share this on The Stroke Blog with readers! This piece summarizes the complexities of the cerebellum so well for the public, and I hope those of you who read this will take a few minutes to listen to the segment if cerebellar injury is of interest.

The piece features Jonathan Keleher, a 33 year old man who was born without a cerebellum. In the segment, it is explained that Mr. Keleher struggles with emotional complexity, language, and other cognitive tasks beyond imbalance and impaired motor skills. However, because he received intensive physical and speech therapy at a young age while lacking a diagnosis, he was able to demonstrate the wonder of neuronal plasticity – the ability to utilize other parts of the brain to accomplish tasks normally dependent on the cerebellum. He walks independently, and he works in an office environment. He lives independently.

We like to believe that each function is neatly packaged within a certain compartment of the brain. Patients often ask: “If my stroke was here [pointing to a specific part of the brain], then what problems should I expect to have?” While some structures in the brain correlate more or less with certain functions, it really is not that simple, as evidenced by the complexity of the cerebellum, and by what a young man who lacks one has been able to accomplish in its absence. The brain is a large community of cells, an interdependent network that makes us who we are, and which enables us to survive from one second to the next.

Demystifying the Patent Foramen Ovale (PFO)

It occurs at least every other week in my own clinical experience. A patient has experienced an ischemic stroke, and after a workup that fails to show significant atherosclerosis (“hardening of the arteries,” “plaque build-up”) in the arteries leading to the part of the brain injured by the stroke, and without obvious risk factors that could have resulted in stroke, an echocardiogram identifies the presence of a patent foramen ovale (PFO). Often patients are told a PFO is a “hole in the heart,” allowing clots to reach the brain that would otherwise end up in the lungs as their final destination. I see in their notes: “Stroke caused by PFO.” Some patients arrive to the appointment, already having determined they want their PFOs closed, and others have already concluded just the opposite – no “heart surgery.” The majority feel lost and are seeking answers. What is a PFO, and what is the significance of it?

The purpose of this post is outlined in the title – to remove some of the mystery from the PFO, although its potential effects and clinical associations with it are, indeed, still mysterious.

FetalHeart

In the fetal heart prior to birth, blood enters the right atrium (A). Some of this blood circulates through an opening called the foramen ovale (yellow arrow in image), and into the left atrium (B), bypassing the lungs. When the foramen ovale fails to close, it becomes known as a patent foramen ovale, or PFO. Image source: http://vhlab.umn.edu

foramen ovale (“FO” – if you will) is a very normal part of a fetus’s heart. When we are fetuses, prior to taking our first breaths as our developing lungs remain collapsed, blood bypasses the lungs and receives oxygen from the placenta. As blood enters the right atrium of the heart, it can bypass the lungs by traveling through the foramen ovale, an opening connecting the right and left sides of the heart. After reaching the left side of the heart, blood can then proceed to travel through the left atrium, then the left ventricle, and finally exiting the heart through the aorta. Other features of fetal circulation exist to enable blood to more efficiently reach the placenta, such as the ductus arteriosis, which allows blood to stream from the pulmonary artery directly to the aorta rather than first having to visit the lungs.

A “FO” becomes a “PFO” (“patent” merely means “open”) when that opening between the right and left sides of the heart fails to close completely.

A PFO is not a congenital heart defect. This is an important piece of information for stroke patients found to have a PFO to understand. Many of them arrive at their appointment, believing there is something wrong with their hearts. It is a normal part of fetal circulation to have a foramen ovale.

PFOs are common. Population studies indicate that 20-25% of people have a PFO, and the overwhelming majority of them will never experience a stroke related to this opening between the right and left atria in the heart.  However, when younger people with cryptogenic ischemic stroke (stroke without an identifiable cause) are screened for PFOs, one is found in about 40% of patients being evaluated. This finding has been confirmed in multiple studies.

Screening for PFOs. Typically, a PFO is identified on an echocardiogram, which is an ultrasound study of the heart. Sometimes if there is significant blood flow through the PFO this can be identified on a standard echocardiogram. However, much of the time this is found after a bubble study, or agitated saline injection is performed. The patient has an IV in place in the antecubital region (between the arm and forearm, in the arm opposite the elbow). A small amount of air is mixed vigorously with saline to create numerous small bubbles and then this is injected through the patient’s IV. If a patient does not have a PFO, the bubbles will be visualized under ultrasound as entering the right atrium of the heart, but do not enter the left atrium because they have traveled to the lungs, which filter them. However, if a PFO is present, in many cases bubbles will be visualized entering the left atrium. Typically two injections are performed: one at rest, and one following the Valsalva maneuver, which involves bearing down/straining, as if lifting a heavy load or having a bowel movement. This maneuver increases return of blood to the right atrium, and a PFO that may not be significantly shunting blood to the left atrium at rest may suddenly enlarge when increased filling takes place in the right atrium, so the bubble test may be more dramatic.

There are limitations though. Breast tissue, obesity, and other factors may limit the viewing capabilities through the chest wall to detect bubbles in the left atrium. Sometimes, for no obvious reason, the study is just not of the quality needed to determine if a PFO is present. A transesophageal echocardiogram involves sedating a patient and inserting the ultrasound proble down the patient’s esophagus for a different view of the heart. This is thought to be a more sensitive study. The limitation to this test is that a sedated patient typically cannot be engaged in the procedure to voluntarily perform the Valsalva maneuver, so a PFO that is only a significant presence during such a maneuver may be missed.

TCD bubble study

This image compares three transcranial Doppler studies in patients with positive bubble studies for PFOs. The top image is from a patient with a PFO that is likely very small and which only allows a small degree of shunting from the right to left atrium. Each red vertical line represents a microbubble that has crossed to the left atrium and been detected in the brain during the test. The strip in the middle is from a patient with a moderate amount of shunting – more red lines/microemboli detected, but each one is still discernible from those around it. The bottom strip demonstrates the “shower effect.” The PFO is large and there is so much shunting that the microemboli are too numerous to count. Image source: http://www.revespcardiol.org

Transcranial Doppler is a study using ultrasound that measures blood flow within the major arteries of the brain. The same bubble study described above during an echocardiogram can be performed while blood flow is monitored in the middle cerebral arteries of the brain, and the detection of microemboli (small “blips” heard during monitoring) following the injection indicates that some form of passage from right-sided circulation to left-sided circulation is taking place. The limitation here is that pulmonary shunts, or vessels carrying blood directly from arterial to venous circulation within a lung, can also give a positive bubble test since transcranial Doppler does not involve the direct visualization of bubbles. However, signals are detected later than expected if the shunting is occurring in the lungs (more cardiac cycles following the injection than the timing of when signals from bubbles crossing through a PFO would be heard).

Transcranial Doppler is sensitive in detecting a PFO, and if consistent with this should be followed up with an echocardiogram, if not already performed.

If a PFO is detected, what then? This can be a challenging question to answer, in part because it is impossible to prove whether the PFO actually played a role in the stroke, or if another factor was at play and the PFO is just receiving the blame unnecessarily.

The question of whether to continue a stroke patient with a PFO and without another obvious cause of stroke on medical therapy or to close the PFO has been tested in at least two randomized clinical trials – CLOSURE I and RESPECT.

The CLOSURE I trial failed to show a significant benefit to PFO closure over medical therapy. However, CLOSURE I enrolled patients with either evidence of stroke on brain imaging or patients with “TIA.” The reason I place the term TIA in quotes is because more than half of the consults I see for diagnosis of “TIA” do not turn out to be actual TIAs, but migraines, seizures, or other conditions that mimick TIAs. The point here is that many neurologists argued that the validity of CLOSURE I results was negatively impacted by potentially enrolling patients into the trial with PFOs who had not actually had a vascular event, and that this may have skewed the data.

RESPECT NEJM

The RESPECT trial randomized young patients with PFOs and who sustained strokes without a known origin to either receive “best medical therapy” or to undergo PFO closure in addition to remaining on “best medical therapy.” There was no significant difference in stroke outcomes between the two groups, but may have been some benefit in patients with large PFOs or with aneurysmal atrial septum.

RESPECT was a trial randomizing only relatively young stroke patients with PFOs (no TIAs were included – there had to be evidence of stroke on the patient’s neuroimaging) who lacked another apparent source for the stroke to either PFO closure plus medical therapy, or medical therapy alone for stroke prevention. The overall trial failed to show benefit to PFO closure over medical therapy alone. However, in a secondary analysis, patients who had large PFOs or who had a finding known as an atrial septal aneurysm (very mobile wall separating the two halves of the heart) did show more potential benefit for stroke prevention from PFO closure and medical therapy than from medical therapy alone.

What is medical therapy? Medical therapy refers to any non-invasive therapy measures taken, in this case – to reduce the risk of another stroke. For patients with small PFOs and no history of stroke, this usually meant aspirin daily. For patients with atrial septal aneurysm, there is some data suggesting a relatively high risk of stroke recurrence on aspirin, but that anticoagulation may be more beneficial. I have found that the type of “best medical therapy” recommended to a patient often plays a role in his or her decision regarding PFO closure. Patients are often more willing to take aspirin daily over undergoing PFO closure, but many young patients are not thrilled with the idea of anticoagulation and the risks it carries over the long term.

It is mostly performed now via catheterization with an implanted device sealing the opening between the right and left atria. The procedure typically lasts less than one hour from start to finish, and patients usually go home from the hospital the following day. At some hospitals, they may even return home on the same day. There are potential complications to a PFO closure, including bleeding, infection, and the potential for atrial fibrillation, an irregular cardiac rhythm that can generate clots and result in stroke. Based on data from RESPECT, the incidence of atrial fibrillation did not differ significantly between the PFO closure group and the medical therapy alone group.

Following the publication of RESPECT trial results, PFO closure remains a topic of controversy in the field of stroke prevention and is still heavily debated.

 

Mistakes young stroke patients make

I will keep today’s post brief, but wanted to relay mistakes that young stroke patients frequently make in hopes that they will not perpetuate. Yesterday I saw a young stroke patient who decided to rest when symptoms began, so it is worth reiterating errors made and why these actions should be avoided.

  • Taking a nap/lying down when stroke symptoms begin. Remember, an ischemic stroke patient is only eligible for IV t-PA (the “clot busing” medicine) for 3-4.5 hours after a stroke begins, and with each passing minute that the brain does not receive blood flow, approximately two million cells will perish. When a stroke patient awakens from a nap, it is often too late to intervene. Call 911.
  • Driving himself/herself to the hospital. This is a terrible mistake for many reasons. A stroke patient is more likely to be involved in a motor vehicle collision if trying to drive while the brain is not receiving adequate blood flow/oxygen. Vision and cognition may be impaired. There could be delays in care with traffic on the road. Instead of being brought directly back to be evaluated by the emergency medicine physician, a patient may incorrectly be asked to wait in the triage area if not arriving by ambulance, which creates further delays. Do not drive to the hospital if you may be having a stroke.
  • Taking aspirin at home. Remember that 20% of all stroke are hemorrhagic, or “bleeding strokes.” Aspirin may worsen bleeding, and no one will know whether a stroke is ischemic (due to a blood clot blocking blood flow to the brain) or hemorrhagic until a head CT scan or MRI can be performed to visualize the brain.

I had the privilege of providing a basic overview about stroke on May 1, 2014 on a local news show in Charlotte, NC to start Stroke Awareness Month this year. If you are interested in viewing this, click here. Remember the FAST mnemonic for identifying stroke early so we can work to prevent disability from stroke.

  • Face – Is a facial droop present on one side?
  • Arm – If both arms are extended, and one drifts down due to weakness, this could be a stroke until proven otherwise
  • Speech – Is there slurred speech? Is there difficulty finding the words with which to communicate?
  • Time – Time is critical, as stated in the above points. Call 911.

A Normal Head CT Scan Does Not “Rule Out” Ischemic Stroke – Part II

As a follow up to last week’s post about head CT scans failing to demonstrate evidence of ischemic stroke in certain situations (early stroke, strokes of small sizes, strokes in the brainstem or cerebellum), I wanted to share several cases illustrating the truth behind the assertion.

CT negative stroke CThe head CT image on the right was obtained from a young woman who was 31 years old at the time of her stroke. She presented to an outside emergency department at a small hospital with numbness and jerking movements of her left arm. Her blood pressure was high, and she was discharged home with a diagnosis of hypertension. Her head CT scan was normal at that time. Shortly after arriving home, she developed prominent left-sided weakness, returned to the ER, and then was diagnosed with an early ischemic stroke. The patient’s right cerebral hemisphere (which is on the left side on our view – the patient is facing us on this CT image, so what we see as the left side is actually the patient’s right side) appears darker than in the left hemisphere. This is because edema (swelling) and ischemic injury have occurred in the brain. Several years later, she has reduced use of her left hand and struggles with anxiety. She and her husband have been a source of great inspiration to me as I have had the privilege of observing them persevere through her challenges. CT negative stroke D

The MRI to the left belongs to a woman who presented to an ER with isolated leg weakness, and a stroke was “ruled out” with a normal head CT scan. She returned home, and later returned when her symptom worsened. Her brain MRI demonstrates acute cerebral ischemia (injury emerging from lack of blood flow) in the territory of the right anterior cerebral artery (the white arrow tip indicates the location of the stroke). See my previous post, A Tale of Two Carotid Artery Dissections, and the Miracle of the Circle of Willis, for a tutorial on the major arteries bringing blood to the brain.

For all of the frustration that I hear from patients about strokes that have been missed on CT scans, though, I feel that it is necessary to celebrate when a not-so-obvious stroke is diagnosed early enough for what it actually is, and the patient is able to receive the appropriate therapy for the best shot at a positive outcome. It does actually happen, and I tell the following story to offer hope. Sometimes things run as they should on the front lines of medicine, and it is quite refreshing when things go right!

CT negative stroke BA woman suddenly became very dizzy and had difficulty speaking clearly. The alignment of her eyes became skewed, and she was unable to focus on a single target. Following this, she became confused and disoriented, and was unable to move her right side. Her symptoms were fluctuating, and those around her could not figure out in that moment exactly what was occurring. She was brought to a local hospital, and the ER physician, concerned for possible stroke, called the on call neurologist. The patient had the head CT scan to the right, which was interpreted as normal by the radiologist (and which I agree is unremarkable). The patient received IV t-PA immediately after the CT scan was able to exclude this as a hemorrhagic stroke, on the assumption that the patient was in the midst of an early ischemic stroke.

On the following morning, the patient’s right-sided weakness had completed resolved, her speech was clear, and her thinking and reasoning had returned to normal. The only symptom that remained were some visual abnormalities. At this point, that has improved as well.

ct negative stroke AHer brain MRI (on the left) that was performed the following day revealed that she had, indeed, sustained an ischemic stroke. Fortunately, she was able to receive IV t-PA early enough to minimize the damage. Thank goodness the emergency medicine physician did not “rule out” stroke with her normal head CT scan. On the following night, the same emergency medicine physician was working and called about a different neurological patient. During the discussion, feedback was provided to him about how the previous night’s patient had improved, and how the MRI did confirm the presence of ischemic stroke. His response was: “It always feels good to know that you’ve made the right decision.” Yes, it certainly does.

A Normal Head CT Scan Does Not “Rule Out” Ischemic Stroke – Part I

“Head CT ruled out stroke.”

It happens multiple times each week. A patient arrives for a consultation, bringing outside medical records from the emergency department where his or her initial evaluation took place. Inevitably I will find the above statement, or some slight variation of it, stated in the notes, as if serving as a justification for why it was okay to send the patient home. Often the patient wonders why he developed partial visual loss for 30 minutes, or why the left side of her body was tingling for hours even prior to the decision to seek medical attention. After all, the symptoms seemed real at the time, but how to explain what happened since the head CT ruled out a stroke?

From my own experience caring for young stroke patients, I hear the same themes reiterated:

  • “Everyone tells me that I don’t look like I’ve had a stroke, but I have never felt like the same person since my stroke.”
  • “I have so much difficulty focusing and concentrating since my stroke, and I’m worried about my short term memory.”
  • “I was told that I shouldn’t still be experiencing pain now that my vertebral artery dissection has healed, but my headaches are still awful.”

I could list at least 20 bulleted themes commonly heard when talking with young stroke patients, but perhaps the most common one that I hear is: “The first time I went to the ER, I was sent home.”

There are, of course, significant concerns about a young stroke patient seeking medical attention in the ER with stroke-like symptoms, and then being discharged home. The most critical reason to identify early ischemic stroke symptoms in a patient of any age is to take advantage of the only FDA-approved medication in the treatment of acute ischemic stroke – IV t-PA. As mentioned in a previous post, t-PA is a “clot-busting” medication. When a clot blocks blood from flowing in an artery, the administration of t-PA can dissolve the clot, relieving the obstruction and allowing blood to start flowing again. In acute stroke, every minute that passes equates to the death of approximately 1.5 to 2 million neurons (cells in the brain or spinal cord).

With each passing minute that blood is not flowing to part of the brain, the likelihood of a good functional recovery decreases. In addition to the decreasing benefit of t-PA with the passage of time during those first hours of an ischemic stroke, the risk of cerebral hemorrhage from giving t-PA increases. As tissue in the brain sustains injury from this lack of blood flow, the tissue becomes “leaky” and starts swelling, and giving a clot-busting medication like t-PA to a patient with brain tissue that has already died raises the risk that the drug could cause a brain hemorrhage.

ecass 3 graphThis graph appeared in the paper that outlined the results of a stroke clinical trial known as the ECASS 3 study. ECASS 3 was a trial that demonstrated that some patients benefitted in terms of functional recovery from receiving t-PA out to four and a half hours after the start of their stroke symptoms. Prior to this trial, the “window” for giving t-PA to an ischemic stroke patient was three hours after stroke symptoms began. The FDA in the United States has not approved t-PA for use beyond three hours into an ischemic stroke, although in other parts of the world t-PA has been approved for up to 4.5 hours based on this data. I include the graph from that paper to demonstrate that minutes do count. The higher the solid line is on the graph, the better the likelihood of a good functional outcome without significant disability after a stroke. As time passes on the x-axis (numbers on the x-axis represent the number of minutes that have passed since a stroke began), one can see the line trending down, indicating smaller chances of seeing a good outcome. Once the line crosses at 1.0, this is the time point at which is becomes more dangerous to give t-PA because the risk of bleeding is no longer outweighed by the benefit. At this point, for the majority of patients, brain tissue has died, and there is no more benefit to be gained.

When the assumption is made that a patient with stroke-like symptoms is not having a stroke, a CT scan of the head is usually obtained to confirm this assumption. This is flawed reasoning though. The sensitivity of a CT scan without contrast within the first 12-24 hours of an ischemic stroke is around 65%. This means that 35% of patients presenting 12-24 hours after a stroke has started will have essentially normal head CT scans. Now, consider patients who are within the time window for consideration for t-PA. The sensitivity of a head CT scan during the first three to four and a half hours of a stroke is even lower.

A head CT scan is a very good tool for diagnosing bleeding that occurs in the brain, and this is the reason why patients presenting with stroke symptoms are supposed to have a CT scan – to look for blood. The purpose of a CT scan should not be to diagnose an ischemic stroke. The likelihood of detecting hemorrhage in the brain is around 90-95% with a CT scan. Since 20% of strokes are of the hemorrhagic type, but it is impossible to determine based on a patient’s symptoms alone whether a stroke is ischemic (due to a blood clot blocking blood flow) or hemorrhagic, a CT scan clarifies the stroke type.

When I am seeing an acute stroke patient in the ER, I expect to see one of three things on the head CT:  1) evidence of bleeding (hemorrhagic stroke), 2) evidence of ischemic stroke (which means swelling and cell death has already occurred), or 3) a normal head CT scan. It is the patient with the normal head CT scan who should receive t-PA, because this is the patient who is very early into an ischemic stroke. An early stroke can be a treatable stroke, but if a patient is sent home on the assumption that a normal CT scan “ruled out” a stroke, then the only evidence-supported medical therapy for treatment has been denied to that person.

 

A Tale of Two Carotid Artery Dissections, and the Miracle of the Circle of Willis

Nature is kind to some, and not so merciful to others. Much of what happens to us on a daily basis stems from chance, and almost every evening I try to reflect at least briefly on my good fortune to have experienced another day with my family, friends, and patients, knowing that it can all change so abruptly.

In order to understand the wonder and tragedy that lies within the following anecdote, it is necessary to understand some of the basic vascular anatomy of the brain – the plumbing that enables blood to circulate, that sustains the function and viability of the organ that makes us who we are.

circle of willis image

Image credit: http://www.deviantart.net

There are typically four arteries that bring blood to the brain – an internal carotid artery on each side (A) and a vertebral artery on each side (B); the vertebral arteries join together to form the basilar artery (C), which supplies blood to the brainstem and the back of the brain. The major arteries that extend from the internal carotid arteries in the brain are the middle cerebral arteries (D), and again, there is one on each side. The middle cerebral arteries supply blood to approximately 2/3 of the cerebral hemispheres. Smaller arteries supplying the inner midline surfaces of the brain also arise from the internal carotid arteries, called the anterior cerebral arteries (E). In the majority of people, there is a bridge connecting the right and left anterior cerebral arteries, called the anterior communicating artery (commonly called the AComm, F). With the AComm comes a connection between blood flow going to the right and left sides of the brain. I have seen patients arrive with completely blocked carotid arteries and absolutely no symptoms, and when evaluating cerebral blood flow with ultrasound or with angiographic imaging, it is clear that the side of the brain with the carotid artery occlusion is borrowing blood from the other side, using what is called collateral flow.  There is also the potential for sharing blood between the front of the brain and the back, via posterior communicating arteries (PComms, G, potentially one on each side). A complete circle in patients with both an AComm and PComms in addition to the other normal arteries in the brain is known as the Circle of Willis. About 30% of people possess a complete Circle of Willis.

During a weekend when I was on call, a previously healthy man in his 40s transferred from an outside hospital for management of an extensive right hemispheric ischemic stroke. He was critically ill upon arrival with an extremely concerning neurological exam. His angiographic imaging (imaging of his arteries) revealed that he had a right internal carotid artery dissection (essentially, tearing of the inner lining of the artery) with thrombus (clot) obstructing flow. His right hemisphere was ischemic, and he was unable to generate alternative ways of obtaining blood flow to this region in his brain. He lacked a complete Circle of Willis – no AComm and no PComms.

I find that certain days exist in which neurological themes declare themselves. On some days, I will see four patients consecutively who all have atrial fibrillation, an irregular heart rhythm that can result in ischemic strokes. On other days, I may receive three referrals for stroke that occurred during pregnancy or in the postpartum period. On that particular weekend, though, the theme was clearly carotid artery dissections. As I was leaving this man’s room in the neurological intensive care unit, the ER paged me, requesting guidance on a woman who had arrived with drooping of an eyelid (ptosis), and her pupil on the same side was more constricted than in the eye on the other side. This sounded like a classic Horner syndrome. Horner syndrome can occur with an injury to the internal carotid artery, which can result in both of the findings mentioned as well as abnormal sweating on the affected side of the face. I recommended that the patient have a brain MRI along with an MR-angiogram of the head and neck to exclude the possibility of a carotid artery dissection, a potential cause of Horner syndrome. I received a page soon after this that her imaging was, indeed, consistent with a significant carotid artery dissection. Fortunately, there was no stroke present. Aside from the eyelid droop and abnormally sized pupil, she was completely neurologically normal. Her MR-angiogram of the brain revealed that she possessed something valuable that the first patient lacked – she had an AComm.

MRA right carotid dissection

The blue arrow delineates flow in this patient’s normal left internal carotid artery. The green arrow demonstrates the absence of blood flow in the right internal carotid artery. The red arrow identifies the AComm, connecting the left (normal) circulation in the brain to the right side, and enabling the patient to avoid a stroke.

When I evaluated the patient in the ER, she told me that she became concerned about the abnormal appearance of her pupil, and had decided to seek medical attention for this in the ER rather than waiting until Monday to talk to her primary care provider. She was started on antiplatelet therapy for stroke prevention, and did not sustain a stroke. Nearly one year later, her Horner syndrome has improved (although not completely resolved) and she is doing well.

I am convinced that carotid artery dissections are underdiagnosed. Frequently, these patients present to the ER or to their primary care providers with headaches that seem like migraines at first glance. Perhaps a head CT scan is performed, which is not an effective study for excluding ischemic stroke (especially very early stroke). A brain MRI is a more sensitive tool for identifying early ischemic stroke, but if a carotid artery dissection is present, this will only be seen on a brain MRI if the dissection is located close to the brain and is large. If the dissection is small, or located farther down in the neck, a brain MRI will miss it. If a patient seeks medical attention for a severe headache unlike any other previously experienced, a migraine that differs from the patient’s description of his/her typical migraines if the person is already a migraine sufferer, or if the patient has any associated neurological symptoms involving the face, eyes, speech, or extremities, a brain MRI along with some sort of imaging of the arteries in the head and neck should be performed.

I reflect back on the ironic juxtaposition of these two patients presenting on the same morning, and marvel at what a difference the presence of a tiny artery in the brain can make. In this case, it was the difference between returning to a good, normal life without stroke, and tragically in the first patient’s case, an untimely death. He passed away within the week, despite the intensive medical care that he received.

I have often wondered if I have a complete Circle of Willis. Do I have an AComm? I don’t know. I do not have an answer, and perhaps I will never seek one, because what is up there is working for now, and I cannot change what I have. Certain cards are dealt to us long before we ever take our first breaths in the world, and as much as we like to feel empowered to create our own destinies, we do not have a say in whether our Circles are complete or not. Stroke brings the realization of a loss of control, and with this comes fear and anxiety. Stroke is more than just a diagnosis with symptoms. But when I see a patient with a carotid artery dissection and an Acomm providing flow, I see perseverance, and it gives me pause.

Deconstructing the “Mini-Stroke”

On Sunday, November 3, 2013, the Houston Texans played an NFL home game against the Indianapolis Colts, which began relatively uneventfully. However, it became clear that the game would not proceed in a typical manner as millions of viewers observed live footage of Texans head coach Gary Kubiak, 52, collapse on the field while exiting to the locker room at halftime.

The following headlines filled the national media during the week after Kubiak’s event:

TIA “mini-stroke” may increase risk for serious stroke – CBS News, November 6, 2013

Texans’ Kubiak Had Mini-Stroke, out Indefinitely – Associated Press, November 5, 2013

 Kubiak Released From Hospital After Suffering Mini-Stroke – 740AM KTRH Houston, November 5, 2013

Gary Kubiak Had Mini-Stroke: Houston Texans Coach Released From Hospital, Out Indefinitely – The Huffington Post, November 5, 2013

I am a vascular neurologist, a neurologist who has completed additional fellowship training in order to specialize in the treatment and prevention of stroke. Since completing my stroke fellowship in 2010, I have had the great privilege of caring for many patients just like Gary Kubiak, adults on the relatively young side who never expect such an event to disrupt their lives. The unfortunate reality is that stroke can happen at any age and can affect anyone.

A concern I felt with the headlines above is the reference to Kubiak’s event as a mini-stroke. This is a term that has become very popular in our American culture, and I hear it all of the time from my patients and their family members. “It was just a slight mini-stroke.” “Aunt Mildred had a mini-stroke while eating dinner.” “He had a touch of the mini-stroke.”

A stroke is a stroke. Period. A stroke results in an injury to the brain. There are two basic types of strokes – ischemic and hemorrhagic. An ischemic stroke occurs when blood cannot reach part of the brain for a prolonged period of time and permanent damage to brain tissue takes place. A hemorrhagic stroke occurs when a blood vessel ruptures and bleeding occurs within the brain. Roughly 80% of strokes are of the ischemic type.

A transient ischemic attack, or TIA, occurs when blood flow is disrupted to the brain and symptoms concerning for stroke occur, but then blood flow is either restored or the brain compensates for the absence of blood flow by seeking and acquiring blood from other sources and no damage to the brain occurs.

During a stroke, brain damage occurs. During a TIA, damage does not occur.

What about a TIA during which damage does occur? What is that called? The answer is – a stroke.

To describe a TIA as a “mini-stroke” misses the difference between the two terms. A TIA is not a stroke because damage is avoided. A stroke is not a TIA because brain damage has occurred. I like to refer to a TIA as an almost-stroke as opposed to a mini-stroke. Throughout the lifetime of this blog, I will continuously refer to TIAs as almost-strokes.

Sometimes patients may refer to a stroke with relatively mild deficits as a “mini-stroke” to distinguish it from a stroke that leaves someone externally and obviously disabled. This is also inaccurate. I have seen patients without a single physical visible deficit from a stroke who are significantly disabled from the cognitive impairment that frequently occurs following a brain injury. I have cared for a patient for the past two years whose only symptom from her “mini-stroke” (the term she used at her first appointment with me) was a left-sided neglect syndrome. This occurs when the brain fails to recognize that the left side of the body exists, even though the left arm and leg may move appropriately and strength on the left side can be left fully intact. She was a successfully employed person prior to her stroke in her 50s, and she has not been able to work since her stroke. She does not factor in columns on the left half of the screen when working with spreadsheets because her brain fails to recognize the left half of her conceptual world. She neglects to brush the left side of her hair and has tooth decay in the left side of her mouth because she does not brush her teeth on that side. She cannot drive because she visually neglects cars that appear in the left half of her world, even though her vision on the left side is intact. Is this really a mini-stroke?

In the initial evaluation of a stroke patient, this graphic is presented in order to calculate a score known as the National Institutes of Health Stroke Scale Score (NIHSS Score). The examiner asks the patient to describe what is seen in the picture as a test of language fluency. However, patients with profound left visual neglect will describe the woman washing dishes at the sink, but will fail to recognize the children in the left half of the scene.

In the initial evaluation of a stroke patient, this graphic is presented in order to calculate a score known as the National Institutes of Health Stroke Scale Score (NIHSS Score). The examiner asks the patient to describe what is seen in the picture as a test of language fluency. However, patients with profound left visual neglect will describe the woman washing dishes at the sink, but will fail to recognize the children in the left half of the scene.

Perhaps the other reason why I prefer to avoid the modifier “mini” in front of a word as significant as “stroke” is because patients tend to downplay the importance of the event. I love caring for patients after TIAs, because the damage has not yet occurred, and we can intervene to prevent a stroke! If a patient has a TIA and refers to it as “mini,” then I find there is less motivation for the person to quit smoking, comply with therapy, eat healthily, or exercise regularly. After all, it was only a mini-stroke.

The other piece to these headlines is the relatively young age of the Texas coach. I definitely see patients at 52 with accelerated atherosclerosis (plaque buildup in the blood vessels, or “hardening of the arteries”), high blood pressure, diabetes, elevated cholesterol levels – some of the more typical stroke risk factors seen in older adults. However, it brings to light that a person is never too young to have a stroke, and more awareness hopefully will result in a call to 911 when stroke symptoms develop as opposed to taking a nap in an effort to sleep it off. Young people frequently do not believe their symptoms might represent a stroke, and choose to rest in hopes that the episode will resolve spontaneously. When they awaken, often there are no interventional options available, and therapy shifts from acute treatment of the current stroke to rehabilitating more long lasting deficits and focusing on how to prevent the next stroke.

During my stroke fellowship at the University of Washington/Harborview Medical Center in Seattle, I experienced my first encounter with stroke in the truly young patient. Samantha (not her actual name) was 16 years old when she developed weakness on the right side of her body and was diagnosed with an ischemic stroke based on her Magnetic Resonance Imaging (MRI) of her brain. Her physician recommended that she start taking aspirin daily, a medicine that assists in “preventing platelets from sticking to plaque in the blood vessel wall and from sticking to one another.” I put this phrase in quotes because I use it often when explaining why healthcare providers use aspirin for the prevention of strokes and heart attacks. While Samantha took her aspirin compliantly, she had a second stroke. Clopidogrel (trade name: Plavix) was added to her daily medication regimen. Take what I said aspirin does, and for most people, the effect is essentially more robust with clopidogrel.

Biological warfare had essentially been declared on Samantha’s platelets. She was also started on a statin, a class of medications to lower cholesterol and to protect blood vessels from accumulating plaque, or to protect against “hardening of the arteries.” Surely she was not going to have another stroke. But she did.

This is when I had the privilege of meeting Samantha. My stroke fellowship had just begun, and in my first weeks I encountered this young girl and her frightened mother. I did not know where to start, and I remembered words from mentors throughout medical school and my neurology residency training: Ninety percent of the relevant information for solving a medical mystery is in the history, or what the patient tells us. The rest of it – lab tests, radiology studies, you name it – confirms or denies a healthcare provider’s assessment of what the patient has described. Essentially, if the patient is describing symptoms of a stroke – weakness on one side of the body, drooping of the face, slurred speech – then my tests are to confirm or deny my suspicion. This is why taking the time to listen to patients is critical in providing care.

When Samantha recounted the stories of each stroke, there seemed to be a strong headache element. Headaches can occur with strokes, but many strokes are painless, and it seemed important that she would remember headaches while experiencing stroke symptoms. Not infrequently patients with strokes do not immediately recall a headache, because they are so alarmed by the weakness, numbness, or slurred speech that they forget to tell their physicians about the headache.

Samantha began her tale of her first stroke with details about a headache. My fellowship mentor and I decided that her strokes probably did not stem from platelets, blood clots, or plaque accumulation in her blood vessels. She was 16 years old, so how much plaque could she possibly have accumulated at that point in her young life? We determined that her strokes may have resulted from blood vessels constricting, or spasm/squeezing, as part of a newly described syndrome called Reversible Cerebrovascular Vasoconstriction Syndrome. In order to formally make the diagnosis a patient should undergo imaging of the blood vessels during an episode to demonstrate narrowing and constricting, and then repeat this imaging later to show that the constriction was reversible. We did not have this opportunity with Samantha as the episode was completed by the time we evaluated her, but we did decide to empirically start her on verapamil, a medication that can assist blood vessels with relaxation. The thought is that it can help to prevent constriction of the arteries.

Magnetic Resonance Imaging (MRI) of the brain of a young stroke patient with Reversible Cerebrovascular Vasoconstriction Syndrome. The bright areas are regions where blood flow has been recently disrupted as a result of arteries constricting.

Samantha did not have another stroke. We stopped her statin for cholesterol control, and we stopped her clopidogrel as antiplatelet therapy. Off of these two medications, she did not start having strokes again. I continued seeing her in the stroke clinic throughout my fellowship year, and she did very well in her recovery. I recently reconnected with her, and since that time she has had a healthy baby without stroke complicating her pregnancy.

The valuable lesson I learned from Samantha is that the young stroke patient is an entity of its own. Because many strokes in the general population stem from plaque accumulation and platelets adhering to it, stroke patients end up on medications that prevent platelets from functioning and on statins to prevent plaque buildup. In many cases, this is a correct, evidence-based course of action. But a 16 year old is not a typical stroke patient, and the origin of her stroke was not going to be typical either.

When a young celebrity has a stroke, it makes the national news, and there is dialogue for a few days about how surprising it is that someone so young could have a stroke: Bret Michaels, 47 at the time of his stroke; Frankie Muniz, 26 at the time of his “mini-stroke” (TIA). While gone from recent memory, Curly Howard of The Three Stooges fame died from complications of a stroke at the age of 48. Jean-Dominique Bauby, the editor of the French magazine Elle, sustained a severe stroke at the age of 43, resulting in locked-in syndrome, a phenomenon I will examine in a future blog post. Bauby “dictated” his memoir, The Diving Bell and the Butterfly, by blinking his left eye when his associate, Claude Mendibil, would speak the desired character after verbally scanning through the alphabet, starting with letters most frequently used in the French language for more optimal efficiency.

In my own practice, it seems like every week I evaluate someone who had sustained a stroke under the age of 50. The cumulative sum of patients in this population increases with each passing month, and in 2011, after practicing for one year following my stroke fellowship, I noticed that most of the young stroke patients seemed to experience similar issues that created significant stress in their lives. To start, young stroke patients spoke of feeling alone in their struggles because the people they knew with strokes were older, and thus they found it difficult to relate to the experiences of other stroke patients. These patients found their strokes to be financially stressful, as they typically were working full time prior to their events, and had not yet invested enough for retirement. One of the challenging questions frequently was whether to try to return to work for badly needed income despite deficits in functioning, or whether to apply for disability, knowing the amount would be substantially less than these patients were used to earning. Some of these patients had just become parents within the past several years, and others found that their relationships with their spouses had changed after stroke. One complaint I hear recurrently is the frustration young stroke patients feel when they are told: “You don’t look like you’ve had a stroke.” They feel an expectation to perform at their pre-stroke levels and to return to normalcy, but many feel forever changed in some way. It became clear that these patients needed a support group, and we launched the Young Stroke Survivor Support Group in May (Stroke Awareness Month) 2012 at our neurology clinic in Charlotte, North Carolina.

There is interest in stroke and how it can affect younger people, but there are few resources for this patient group. The Stroke Blog will tell the tales, with the blessings of the patients, of some of the young individuals affected by stroke who have entrusted me with their care. When a stroke appears in the mainstream media, I will attempt to break it down in an understandable way for readers here. While I probably will not be able to answer all of the questions that are sent my way, I will select questions that yield the opportunity for education and dialogue with the hope that greater understanding of stroke will come for my readers and will write about suggested topics. I will be unable to offer specific medical advice through the blog, though, and also kindly ask that if someone is experiencing concerning symptoms (weakness, numbness, visual loss, headaches, trouble speaking, etc.) that 911 be called as opposed to submitting a blog comment!

It is worth noting that approximately 25-30% of strokes, even after an extensive diagnostic workup, remain “cryptogenic” – that is, a flowery medical term for “we don’t know why this happened.” In these cases, I remain true to the principle that what the patient tells the physician is ninety percent of the answer. Then, I make the best decision I feel I can make, knowing that some things remain unknown, and regardless of what we may desire, tomorrow is not guaranteed to any of us. Young stroke patients have taught me more than I can possibly recount about humility, despair that transitions to optimism and hope, enduring love between partners, strength, determination, and how to keep going.

I sincerely hope that you will find The Stroke Blog useful, and I look forward to the journey.